
Abstract. The potential-energy surface for the Li(2S)–HF

( ~XX
1
Rþ) interaction, where HF is kept rigid, is calculated

using the supermolecular unrestricted fourth-order
Møller–Plesset perturbation theory. The basis set su-
perposition error corrected potential indicates two
minima. The global minimum occurs for the bent
Li...FH structure at R=1.95 Å and h=70� with a rela-
tively deep well of De=1,706 cm)1 and the secondary
minimum is found for the linear Li...HF configuration at
R=4.11 Å with a well depth of De=288 cm)1. A barrier
of 177 cm)1 (with respect to the secondary linear mini-
mum) separates these two minima. In this study 27
bound states of the bent Li...FH minimum and eight
bound states of the linear Li...HF minimum up to the
Li+HF dissociation threshold are calculated. The en-
ergy partitioning using the intermolecular perturbation
theory scheme shows that the origins of the stability of
the structures studied are entirely different. The global
minimum is stabilised using the attractive Coulombic
interaction and unrestricted Hartree–Fock deformation
energy. The latter term originates from the mutual
electric polarisation effects. The secondary linear mini-
mum is mostly determined by the anisotropy of the
repulsive Heitler–London exchange-penetration and
attractive dispersion energies.

Keywords: Potential-energy surface – Li–HF – Bound
states – Weak interaction – Intermolecular perturbation
theory

Introduction

One of the ongoing challenges in the study of intermo-
lecular forces is to gain insight into the nature of open-

shell van der Waals (vdW) complexes [1, 2, 3, 4]. There is
growing interest in these systems for three reasons: their
interactions are viewed as intermediate between nonb-
onding vdW interactions and the chemical bonding;
many of them are prereactive complexes formed in the
entrance valleys of potential-energy surface (PES); and
the presence of unpaired electrons might induce a new
type of electronic anisotropy. Open-shell vdW molecules
can affect the outcome of reactive events, as well. The
remote regions of the reactive PES are governed by the
long-range forces. These forces possess the capacity for
orienting the reactants favourably or unfavourably as
they approach one another or may trap them in poten-
tial wells, before they have a chance to engage in reactive
encounters.

A number of experiments have been performed on
the Li+HF fi LiF+H reaction as a prototype of a
heavy–heavy–light system, becoming a benchmark in
molecular reaction dynamics owing to its relative sim-
plicity [5, 6, 7, 8, 9]. The diatomic fragments having
strong dipolar moments allow the preparation of
reagents in specific initial states and the determination
of the final state of products. In addition, the reagents
present a sufficiently deep well in the entrance channel
from which the system can be excited and the reaction
dynamics studied at very precise energies [10].

Earlier molecular beam studies [5] cannot be used
to extract information about the spectroscopy of the
Li...HF precursor complex. The experimental work
that offers some basic and reliable facts about this
weak interaction is the nonreactive scattering experi-
ment by Loesh and Stienkemeier [6, 7]. Their experi-
ment provides evidence of a well depth of 300 meV
(2,420 cm)1). This finding is not in disagreement with
the theoretical results obtained at the various ab initio
calculation levels [10, 11, 12]. For example, the full
optimised PES of Jasper et al. [11] based on the
MRDCI method has the minimum at hLi–F–H=110�,
RLiF=1.88 Å, with interaction energy )0.211 eV
(–1,702 cm)1). The optimised geometry of the interact-
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ing HF molecule was changed minimally (prolongation
about 0.01 Å) with respect to the equilibrium distance.
The basis set superposition error (BSSE) [13] corrected
CCSD(T) calculations [12] based on the unrestricted
Hartree–Fock (UHF) single-determinant reference are
not in contradiction with conclusions of the work
mentioned previously.

The contour map of the ab initio PES (MRDCI
calculations without BSSE corrections) of Aguado et al.
(HF distance fixed at 0.921 Å, see Fig. 2 in Ref. [10])
shows two minima, the global minimum at h=107� and
a less deep minimum for a linear Li...HF arrangement at
an energy of about )0.08 eV. Very recently the first
observation of the Li...HF complex was reported and
theoretically interpreted by Hudson et al. [8]. To the best
of our knowledge, no preliminary information on spec-
troscopic characteristics of the secondary linear Li...HF
vdW complex is available.

The ab initio PESs of the LiHF system presented in
the literature were evaluated using the supermolecular
(SM) approach. Although the SM approach is concep-
tually and computationally simple, it cannot offer a clear
picture of interaction forces. On the other hand, the
intermolecular perturbation theory (I-PT) allows direct
calculations of electrostatic, exchange-penetration, dis-
persion and induction contributions that provide a
physical interpretation of the interactions between the
monomers of a complex. The applicability of I-PT based
on the single-determinant restricted Hartree–Fock or
UHF reference wave functions has recently been pre-
sented for several open-shell vdW systems [14, 15, 16,
17].

The purpose of the present study is to provide the
BSSE-free characterisation of the PES with respect to
the linear vdW minimum at the SM unrestricted fourth-
order Møller–Plesset (UMP4) theoretical level. The PES
is fitted to the analytical form and used to calculate
vibrational energy levels of the LiHF system. Finally,
using the I-PT analysis of the UMP results, we discuss
the physical background of interaction energy anisot-
ropy and individual energy contributions are visualised
by the contour diagrams.

Methodology and definitions

In order to investigate the weak interaction within the open-shell
vdW system, we use the standard ab initio SM approach. At a
given level of perturbation theory, the interaction energy is calcu-
lated from the expression

DEðnÞint ¼ EðnÞAB � EðnÞA � EðnÞB n ¼ UHF; 2; 3; 4; ::: ; ð1Þ

where EAB is the energy of the supersystem AB, and EA (EB) de-
notes the energy of the noninteracting monomer A (B). The level of
theory is indicated by the superscript index n, for example, DEð2Þint
denotes the UMP2 interaction energy.

The UHF–self-consistent-field (SCF) interaction energy can be
decomposed as follows:

DEUHF ¼ DEHL þ DEUHF
def ; ð2Þ

where DEHL is the Heitler–London (HL) energy [18] and DEUHF
def

represents the UHF deformation contribution [2, 3]. According to
the I-PT defined in the orthogonalised basis sets [18, 19], DEHL may
be further divided into the first-order Hartree–Fock electrostatic
term, Eð100Þels (for the notation for this term and further perturbation
terms see e.g. Ref. [20]), and HL exchange-penetration term,
DEHL

exch:

DEHL ¼ DEHL
exch þ Eð100Þels : ð3Þ

The UHF deformation energy originates from the mutual
electric polarisation effects. This term might be approxi-

mated using the sum of the following two perturbation terms:Eð200Þind

and Eð200Þexch�ind (second-order UHF Coulomb and exchange-induc-
tion energies) [21]. However, the inclusion of the higher-order
perturbation contributions and the response or orbital-relaxation
effects is necessary at shorter intermolecular distances [3, 20, 21].

Similarly to the closed-shell cases, the UMP2 correlation
interaction energy can be partitioned as

DEð2Þint ¼ Eð12Þels þ Eð200Þdisp þ Eð200Þexch�disp þ DEð2Þother; ð4Þ

where Eð12Þels denotes the second-order electrostatic correlation
energy (containing Eð102Þels and Eð120Þels energies). Eð200Þdisp and Eð200Þexch�disp
represent the second-order Hartree–Fock dispersion [22] and ex-
change-dispersion energies [20].DEð2Þother encompasses the remaining
exchange and deformation correlation corrections as well as the
response effects [2, 3].

Using diagrammatic techniques, it is possible to distinguish the
third-order interaction energy contributions, like the dispersion-
correlation (Eð210Þdisp , Eð201Þdisp ) and Hartree–Fock third-order dispersion
(Eð300Þdisp ) energies [15, 20]. However, the complete physical interpre-
tation of the higher-than-second-order contributions of the
interaction electron-correlation energies is not straightforward.

To test the stability of the linear vdW complex, vibrational
energy levels were calculated. We used the standard body-fixed
Hamiltonian in atom–diatom Jacobi coordinates. Let us denote
the HF internuclear distance by r, the distance from the centre of
mass of HF to Li by R, and the angle between vectors r and R by
h, where h=180� corresponds to a linear LiHF arrangement.
Coriolis coupling is small in the case of LiHF [12]. In this work,
we focus on the rotationless (J=k=0) eigenstates of the Hamil-
tonian.

The total angular momentum zero (J=0) Hamiltonian is

ĤH ¼ � 1

2l
@2

@R2
� 1

2lHF

@2

@r2
þ 1

2lR2
þ 1

2lHFr2

� �
ĵj2 þ V ðr;R; hÞ; ð5Þ

where l and lHF are the reduced masses of Li–HF and HF,
respectively, and where ĵj2 is the angular momentum operator for
HF.

Calculation details

The PES calculations were performed using the UMP4
method. All UMP4 energies were corrected for the effects
of the BSSE in the Li...FH complex. I-PT calculations
were performed by our own program codes interfaced to
theGaussian 94 programpackage [23]. The SMBSSEwas
determined via the counterpoise method of Boys and
Bernardi [24]. The presented UHF interaction energy
termswere developed using dimer-centred basis sets of the
constituent monomers [13]. The evaluation of the second-
order exchange-induction and exchange-dispersion ener-
gies at the UHF level was realised in the framework of the
single-exchange approximation [20]. The HL energy was
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obtained using the standard Gram–Schmidt orthogonal-
isation procedure.

The augmented correlation consistent basis set aug-
cc-pVTZ [25, 26] was used for hydrogen and fluorine
atoms. Owing to the fact that augmented basis sets for
the Li atom were not available, we decided to use the
basis set reported by Sadlej [27]. It represents the near
triple-f quality basis set augmented by the polarisation
functions suitably optimised to reproduce the molecular
electric properties, especially polarisabilities.

The bound-state energies were determined by a
simple, grid-based, iterative technique as implemented
in the ROVIB3 program [28, 29, 30]. For the case of
triatomic systems of the type A...BC, the ‘‘fast’’ vib-
rational motion of BC can be decoupled from the
‘‘slow’’ intermolecular motions of A...BC [31]. In a
previous study of the Li...FH vdW complex [12] it was
shown that the two-dimensional model, which com-
pletely neglects the coupling between the high- and
low-frequency motions, provides a satisfactory de-
scription of the vibrational levels. In our work we
perform interaction energy calculations within the two-
dimensional model assuming the HF distance fixed at
its equilibrium value, re. In order to use the three-di-
mensional variational approach for the vibrational
states of Li...HF as implemented in the ROVIB3 pro-
gram package, the PES V(r, R, h) is written as a sum of
VBC (r), the intramolecular potential interaction of the
free diatomic molecule HF, and V(R, h), the intermo-
lecular interaction between the A and BC diatomic
molecule. V(R, h) is fitted to the analytical form and the
VBC (r) potential is approximated by the Morse potential
VBCðrÞ ¼ De 1� exp �be r � reð Þ½ �f g2. The Morse param-
eters are taken from experiment [32]. Thus, we have
V(r) fi 0 as r fi ¥. At large R distances between atom
A and the centre of mass of the BC molecule
V(r, R,h) fi V(r). Application of this approach leads to
a considerable simplification of the intermolecular PES
computation. In the vicinity of the linear stationary
point the differences between the ab initio and fitted
energies are less than 2 cm)1.

The Hamiltonian matrix and associated wave func-
tions are represented with evenly spaced grids or discrete
variable representations (DVRs) [33, 34] in R and r,
and associated Legendre polynomials to describe cosh.
The wave function is an expansion in the associated
Legendre polynomials, with the expansion coefficients
depending on R and r. The action of the Hamiltonian
matrix on a vector is similar to that discussed in
Refs. [28, 29], except that r is now treated just like R
with an evenly spaced DVR. As such, the corresponding
problem dimension can be large, so it is possible to apply
energetic cutoffs within a DVR by excluding those DVR
points that yield potential energies greater than some
cutoff value Ecut (potential-optimized DVRs [35, 36]). In
this work we use Ecut=13,170 cm)1 that is above the
energies of interest. To determine vibrational eigenstates
and the corresponding eigenvectors, we employed the
implicitly restarted Lanczos (or more generally Arnoldi)

method as implemented in the ARPACK software
package [37].1

Results and discussion

Features of the UMP4 PES

The two-dimensional PES of the ground electronic state
of the Li...FH vdW complex was calculated in the range
of R from 1.6 to 8 Å and h from 0 to 180�, while r was
fixed at the equilibrium HF distance, 0.9168 Å [32]. The
calculated potential-energy points were fitted to the
following general functional form

V ðR; hÞ ¼ Vmax

X7
L¼0

X6
k¼0

aL
kfexp½�a1ðR� a2Þ�gk

 

�P 0
L cos hð Þ þ 1

!
;

where the energies are given in lEh and P 0
L ðcos hÞ denote

Legendre polynomials up to order L=7. A rigorous
least-squares fitting procedure based on the singular
value decomposition was used to determine all 58
variational parameters (Table 1—the Fortran code is
available on the request). Prior to the least-squares
calculation, the original grid of 360 potential-energy
points was expanded by the bicubic spline interpolation
procedure [38] to 3,293 points. The average absolute
deviation between the original points and the fit was
smaller than 7.5 lEh (1.6 cm)1). In addition to the re-
cent CCSD(T) study of the Li...FH bound states [12], in
this work we investigate the properties of the secondary
linear Li...HF vdW minimum.

The energies are given on an energy scale such that
Li+HF, with HF at its asymptotic equilibrium geome-
try (r=0.9168 Å), is the zero energy. The evaluated PES
reveals three stationary points. The potential-energy
minimum is a bent LiFH vdW structure with potential
energy –7,775 lEh ()0.212 eV or )1,706 cm)1), while
the CCSD(T) potential energy minimum lies at
–1,991 cm)1. The differences between the dissociation
energies characterising the Li...FH vdW complex are
large because the minimum is located close to the re-
pulsive part of the PES. A secondary linear Li...HF vdW

1 ARPACK is a program package designed to solve large-scale
eigenvalue problems. The package is designed to compute a few
eigenvalues and corresponding eigenvectors of a general n·nmatrix
A. This software is based upon an algorithmic variant of the Ar-
noldi process called the implicitly restarted Arnoldi method. When
the matrix A is symmetric it reduces to a variant of the Lanczos
process called the implicitly restarted Lanczos method. ARPACK
software is capable of solving large-scale symmetric, nonsymmetric,
and generalized eigenproblems from significant application areas.
The software is designed to compute a few (k) eigenvalues with user
specified features such as those of largest real part or largest
magnitude. Storage requirements are on the order of n*k locations.
See the ARPACK homepage, http://www.caam.rice.edu/software/
ARPACK
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minimum exists at R=4.11 Å with an energy of
–1,314 lEh ()0.036 eV or –288 cm)1). The MRDCI
calculations [10] reveal the same position of the linear
stationary point. The transition state between the bent
and linear forms has a potential energy of –503.6 lEh.
(The barrier height relative to the linear minimum is
810.4 lEh.)

The geometries, harmonic frequencies and zero-point
energies of the stationary points of the analytical LiHF
surface are listed in Table 2. The harmonic frequencies
and zero-point energies were calculated by treating the
HF vibrational mode as decoupled from the other
modes. For the ground-state geometry the agreement
with recent calculations [11] is reasonable. The LiF and
LiH distances calculated within the two-dimensional
model are about 0.05 Å longer than the MRDCI dis-
tances [11] obtained from the fully dimensional PES.

The values of dissociation energy (De) characterizing
the global minimum on the PES, the Li...FH vdW
complex predicted previously, vary from 1,605 cm)1

(CISD) [39] to 2,250 cm)1 (MRDCI) [10]. The experi-
mental estimate of De=2,420 cm)1 obtained from
backward glory scattering [7] is according to the authors
somewhat too large (by about 25%). Our BSSE-
corrected UMP4 value of 1,706 cm)1 is in very good
agreement with the recently reported MRDCI value,
1,702 cm)1 [11].

Within the SM approach, the truncation effect of the
correlation treatment on the values of the interaction
energies is significant and strongly dependent on R and
h. Individual contributions to the interaction energies of
the LiHF stationary points are given in Table 3. The HF
interaction energy (DEUHF) represents a very important
attractive contribution around the first minimum. The
dominant part of the interaction correlation energy
naturally originates from the values computed at the
UMP2 level of theory. Although the higher-order con-
tributions to the correlation energy DE(3) (DEð3Þint � DEð2Þint )
and DE(4) (DEð4Þint � DEð3Þint ) are smaller than DE(2), they
affect the value of the interaction energy. The interaction
energies calculated using the CCSD(T) method within
the same basis set appear to be lower (about 3.2–8.0%)
than UMP4 values. Finally we would like to note that in

Table 2. Equilibrium structure (Å, degrees), harmonic vibrational
frequencies, zero-point energies (ZPEs), and relative energies
(cm)1) for the LiHF stationary points [RHF=0.9168 Å, x1 (HF
stretch)=4,138 cm)1]

Stationary
point

Global
minimum

Transition
state

Linear
minimum

RLiF 1.936 3.677 4.159
aLi-F-H 108.5 65.3 0
V1

a )1,706 )111 )288
V1+ZPE 760 1,991 1,974
x2 367 (A¢) )109 (A¢) 70 (S+)
x3 425 (A¢) 65 (A¢) 158 (P)
ZPE 2,466 2,102 2,262

aEnergies are given relative to the Li+HF dissociation limitT
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all cases the spin contamination was negligible because
<S2>=0.750 corresponds to the exact value in the
radical monomer as well as the dimer.

Bound states

Vibrational levels were calculated up to the Li+HF
dissociation threshold (2,045 cm)1). After some test
calculations we chose the basis set of 127 functions on
the grid from 2.7a0 to 12.0a0 (1.43–6.35 Å), 59 functions
for r on the grid from 1.3a0 to 2.3a0 (0.69–1.22 Å), and
60 basis functions for cosh on the grid from –1 to 1,
corresponding to h between 0 and 180�. Three-dimen-
sional grid points with energies larger than 13,170 cm)1

were discarded, resulting in a final matrix size of
450,000. In order to estimate bound states of the linear
local minimum, we also used the smaller R-box. The R
parameters varied between 6.0a0 and 14.0a0 (3.17–
7.41 Å) with a 0.073a0 (0.039 Å) step, while the other
boxing parameters remained the same. In this case the
matrix size was about 39,000.

The accuracy of the energy levels was estimated by
additional calculations with slightly different ranges and
grid point numbers. With these parameters, the energy
levels agreed within 1 cm)1.

The topological features of the PES suggest that some
interesting level patterns may arise for higher energies,

especially energies in the vicinity of the linear local
minimum on the surface. We determined the lowest
27 (J=0) vibrational states for the ~XXð12A0Þ LiHF
state. This represents vibrational energies up to E �
2,040 cm)1. In Table 4 the vibrational eigenvalues of the
Li...FH ground electronic state and the linear local
minimum are listed and compared to the relevant results
reported previously [9, 12].

The effect of the zero-point oscillation is clearly large.
The harmonic zero-point energy of the ground electronic
state and the linear local minimum were calculated to be
2,466 and 2,262 cm)1. The zero-point energies predicted
by the bound state calculations are 2,404 and
2,202 cm)1, respectively.

Vibronic wave functions for the states below the
dissociation energy were calculated and analysed. Each
wave function was visually inspected by a two-dimen-
sional plotting routine in order to assign quantum
numbers. Contour maps of selected eigenfunctions in
Jacobi coordinates R and h, while r is fixed at 0.9168 Å,
are displayed in Fig. 1. (The corresponding eigenvalues
are given in Table 4). Sometimes the wave functions
are not aligned along any of the three planes, so we
considered all three planes: (R, r), (R, h), and (r, h).

The ordering of the lowest seven states is the same as
in work of Paniagua [9] except for states (0,0,2) and
(0,1,1). For excited vibrational states, the agreement
with the CCSD(T) results [12] is worse. Usually, the
states obtained in our calculations lie systematically
lower than the states obtained by CCSD(T) calculations
[12]. Up to an energy of about 1,900 cm)1 all states can
be unambiguously assigned to the LiHF ground elec-
tronic state. As the energy increases, the secondary
minimum perturbs the shape of the wave function and
does not allow a clear-cut assignment.

In the linear minimum case, the vibrational energy
levels were obtained from the bound-state calculations
based on the smallerR-box.A linear localminimum series
starts at E=1,914 cm)1 which basically corresponds to
the 17th state calculated in the big R box. The wave
function of the 17th state is shown in Fig. 1 (17). This
wave function ismostly localized around h�180�. There is
a very shallow barrier between the global minimum and
the linear local minimum; therefore the wave function
tunnels through the barrier and is localised with much
smaller intensity on the global minimum, as well. State 18
with energy 1,925 cm)1 is assigned to the global minimum
as (0,1,3). This state is not perturbed by the linear local
minimum. Figure 1 (19, 20) shows very diffuse wave
functions that can be associated with both minima on the
PES. It would be interesting to observe states of themixed
global/local minimum character.

Our calculations illustrate that the series for the local
linear minimum actually interfuse among other levels of
the global minimum. Because the global minimum of the
PES is at h=70�, we expect that the lowest energy states
will be the ones that have the largest probability at h=70�.
However, at energies above 1,900 cm)1 states will con-
centrate around the linear configuration (Li...HF) as well.

Table 3. Individual contributions to the interaction energy (cm)1)

of the Li(2S)–HF (~XX
1
Rþ)complex

Geometry R=1.95 Å R=3.64 Å R=4.11 Å
h=70� h=113� h=180�

DEUHF )1,248.2 145.2 )1.8
DE(2) )323.8 )206.4 )240.2
DEð2Þint )1,572.0 )61.2 )242.0

DE(3) )115.9 )4.7 0.4

DEð3Þint )1,687.9 )65.9 )241.6

DE(4) 7.3 )43.6 )48.6
DEð4Þint )1,680.6 )109.5 )290.2

DECCSDðTÞ
int )1,810.6 )121.2 )299.8

DEHL 3,340.2 423.7 461.6

Eð100Þels )10,825.1 )432.8 )5.0

DEUHF
def )4,588.4 )278.5 )463.4

Eð200Þind )19,889.3 )1,000.8 )603.7

Eð200Þexch�ind 18,338.4 955.1 462.0

Eð12Þels )89.9 )49.1 )29.3

Eð200Þdisp )2825.5 )310.1 )199.0

Eð200Þexch�disp 1,476.5 108.0 50.5

DEð2Þother 1,115.1 44.7 )62.5

Eð210Þdisp þ Eð201Þdisp 72.1 )20.1 )21.0

Eð300Þdisp 59.0 9.7 11.8

Edisp )1,217.9 )212.5 )157.7
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Anisotropy of the interaction energy contributions

The next goal of this study is to explain the physical
origin of the stability of indicated vdW structures in
terms of interaction energy contributions calculated us-
ing I-PT theory. The decomposition of the SM interac-
tion energies might help us to analyse and estimate how
the fundamental components determine its anisotropy.

The UHF interaction energies (DEUHF) display a very
strong dependence on the angle h and distance R. The
contour map shown in Fig. 2b reveals two minima. The
first minimum occurs for the geometry corresponding to
the global minimum on the PES and the second one
appears for the linear arrangement around R=5 Å. This
fact indicates that the stability of the first vdW structure
is mainly influenced by the contributions included in the
DEUHF energy. The decomposition of the DEUHF energy
leads to the DEHL (Fig. 3a) and DEUHF

def (Fig. 4a) terms.
The dependence of the terms just mentioned on h and R
shows no extremal points in the depicted range.

The consecutive separation of the HL energy ac-
cording to Eq. (3) reveals that the positive value of this
term comes out not only from the repulsive character
of the HL exchange-penetration energy contributions
(DEHL

exch), but also from the first-order Hartree–Fock
electrostatic energy (Eð100Þels ), in certain cases. The re-
pulsive character of Coulomb forces represented by the
term Eð100Þels evidently appears at the hydrogen side of
the HF molecule (Fig. 3b). This might be explained by
the fact that electrostatic repulsion between lithium and
hydrogen nuclei is stronger than the mutual attraction

between electrons of the lithium atom and the hydro-
gen nucleus. However, the shift of the interacting lith-
ium atom toward the fluorine atom leads to the
effective increase of electrostatic attraction. The elec-
trostatic border (contour line with Eð100Þels ¼ 0) proceeds
from h=140�, R=2 Å to the linear arrangement near
R=4 Å. We can see that the HL energy in the area of
the secondary vdW minimum is influenced only by the
DEHL

exch energy. On the other hand, the strong repulsion
of the DEHL

exch energy around the first minimum is
effectively damped by the HF electrostatic contribu-
tions.

The UHF deformation term (DEUHF
def ) shows a recip-

rocal character to the DEHL anisotropy (Fig. 4a) and has
a dominant stabilisation effect on the total SCF inter-
action energy around the bent vdW structure. The origin
of the large DEUHF

def energy is quite interesting. The
important part of this energy represents the Coulombic
induction term (Eð200Þind ) which describes the classic charge
induction. As we can see from Table 3, the induction
interaction between the neutral lithium atom and the HF
molecule in a linear arrangement is about 397 cm)1

smaller than for h=113�. As Li and HF separate, the

relevant exchange-penetration counterpart(Eð200Þexch�ind)

goes to zero faster than the Coulombic energy Eð200Þind

(Fig. 4b, c). The strong compensation effects of attractive

Eð200Þind and repulsive Eð200Þexch�ind energies indicates that the
higher orders of induction energies as well as the re-
sponse or orbital-relaxation effects play a nonnegligible
role in the HF deformation energy [3, 20, 21].

Table 4. Vibrational energy
levels (cm-1)for LiHF, (A) the
ground electronic state
~XXð12A0Þ ,(B) the Li...HF linear
local minimum (2S+)

aIn this work relative energies
are given with respect to the
Li+HF dissociation limit. The
Li+HF ZPE is 2,045 cm)1, the
energies of the LiHF ~XXð12A0Þ
ground electronic state and the
Li...HF linear minimum (2S+)
are )1,706 and )288 cm)1,
respectively
bTwo-dimensional variational
results. For details see Table 3
in Ref. [12]
cThe values are taken from
Ref. [9]
dThe results were obtained in
the smaller R box. The R
parameter varied between 6.0a0
and 14.0a0, with step 0.073a0

No. A No. Bd

Energya (vr,vR,vh) This work CCSD(T)b MRDCIc Energya (vr,vR,vh) This work

1 698 (0,0,0) 0
2 1,003 (0,1,0) 305 322.3 363.2
3 1,024 (0,0,1) 326 363.6 395.9
4 1,268 (0,2,0) 570 648.6 659.9
5 1,301 (0,1,1) 603 696.7 746.4
6 1,317 (0,0,2) 619 612.3 691.2
7 1,490 (0,3,0) 792 892.9 879.7
8 1,548 (0,2,1) 850 998.7
9 1,586 (0,1,2) 888 956.4
10 1,661 (0,0,3) 963 923.8
11 1,668 (0,4,0) 970 1,143.1
12 1,743 (0,3,1) 1,045 1,189.0
13 1,802 (0,5,0) 1,104 1,350.0
14 1,814 (0,2,2) 1,116 1,238.8
15 1,887 (0,4,1) 1,189 1,411.1
16 1,896 (0,6,0) 1,198 1,516.2
17 1,915 1,217 1 1,914 (0,0,0) 0
18 1,925 (0,1,3) 1,227 1,273.4
19 1,952 1,254 2 1,948 (0,0,1) 34
20 1,966 1,268 3 1,966 (0,1,0) 52
21 1,980 1,282
22 1,995 1,297
23 1,997 1,299 4 2,001 87
24 2,003 1,305 5 2,005 91
25 2,025 1,327 6 2,025 111
26 2,030 1,332 7 2,038 124
27 2,043 1,345 8 2,040 126
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Fig. 1. J=0 wave functions for the LiHF ~XXð12A0Þ
ground electronic state with assignments # i
(vr,vR,vh), where i is the number of the state given
in Table 4

322



Similarly, the interaction correlation contributions
are important in forming the shape of the total inter-

action energy curves. DE(2) is determined by dispersion

terms Eð200Þdisp and Eð200Þexch�disp. Although the Eð200Þdisp quantities

are smaller than Eð200Þind ones, the addition of the
exchange-penetration counterparts (Eð200Þexch�disp and
Eð200Þexch�ind) indicates comparable importance of dispersion
and induction interactions calculated at the second-or-
der level of I-PT (Table 3, Fig. 5). The other calculated
attractive but smaller term represents the electrostatic
correlation energy (Eð12Þels ). The sum of the exchange-
penetration contribution, the deformation energies, and
the response effects,DEð2Þother, is positive, 1,115.1 cm)1, at
h=70�, while it is )62.5 cm)1 at h=180�.

Table 3 (see Edisp ¼ Eð200Þdisp þ Eð300Þdisp þ Eð210Þdisp þ Eð201Þdisp )
also provides the higher-order dispersion corrections

(Eð210Þdisp , Eð201Þdisp and Eð300Þdisp ) which appear in third-order

interaction correlation energy (DE(3)). Near the global
minimum their sum is positive (131.1 cm)1). It is evident
that the sum of the higher-order dispersion corrections
does not approximate very well the SM correlation
third-order contribution. The sum of the remaining
relevant energies (i.e. third-order electrostatic-correla-

tion, exchange-penetration and deformation contribu-
tions) seems not to be negligible.

Conclusion

The ab initio PES for the Li(2S)–HF (~XX
1
Rþ) interaction

was evaluated at the UMP4 level and analysed by I-PT.
The first, relatively deep well (De=1,706 cm)1) occurs
for the bent structure (the FH–Li angle h=70� and
R=1.95 Å). The well depth of the secondary minimum

Fig. 3. Contour plots: a Heitler–London (HL) energies (DEHL),

b first-order Hartree–Fock electrostatic energies (Eð100Þels ) and
c HL exchange-penetration energies (DEHL

exch). All energies are in
cm)1

Fig. 2. Contour plots: a supermolecular interaction energies
calculated at the unrestricted fourth-order Møller–Plesset level of

theory (DEð4Þint ) and b supermolecular self-consistent-field interaction
energies calculated at the unrestricted Hartree–Fock (UHF) level of
theory (DEUHF). All energies are in cm)1
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is De=288 cm)1) for the linear arrangements (h=180�
and R=4.11 Å). Our results for the global minimum
are in good agreement with the previous calculations
performed at the MRDCI and CCSD(T) levels of
theory. The stability of the vdW minima was investi-
gated by means of the bound-state calculations. We
found 27 bound states of the bent Li...FH minimum
and eight bound states of the linear Li...HF minimum
up to the Li+HF dissociation threshold (2,045 cm)1).

While the wave functions for the lowest states of the
Li...FH ground electronic state are regular and as-
signable, the degree of mixing and complexity increases
at energies above 1,900 cm)1 owing to the presence of
the linear vdW minimum. To obtain more precise re-
sults, a complex analysis with a nonrigid HF molecule
is desirable.

The physical origin of interaction energy anisotropy
was evaluated using the four fundamental components,
electrostatic, exchange-penetration, induction and dis-
persion, which have a physical interpretation similar to
those arising among the closed-shell species [14, 26]. The
analysis of these components reveals that the UHF in-
teraction energies calculated for the bent arrangement
are practically determined by the repulsive DEHL ener-
gies and attractive induction energies included in DEUHF

def
term. The global minimum is stabilised using the
attractive Coulombic interaction and UHF deformation
energy. The latter term originates from the mutual
electric polarisation effects. The secondary linear mini-
mum is mostly determined by the anisotropy of the re-
pulsive HL exchange-penetration (DEHL

exch) and attractive
dispersion (Eð200Þdisp ) energies.

Acknowledgement. This work was supported by the Slovak Scien-
tific Grant Agency (project nos. 1/0055/03 and 1/0052/03).

Fig. 5. Contour plots: a second-order dispersion energies (Eð200Þdisp )
and b second-order exchange-penetration dispersion energies

(Eð200Þexch�disp). All energies are in cm)1

Fig. 4. Contour plots: a UHF deformation energies (DEUHF
def ), b

second-order Coulomb induction energies (Eð200Þind ) and c second-

order exchange-penetration induction energies (Eð200Þexch�ind). All
energies are in cm)1
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